Source code for torch.optim.optimizer
from collections import defaultdict
from torch._six import container_abcs
import torch
from copy import deepcopy
from itertools import chain
import warnings
import functools
class _RequiredParameter(object):
"""Singleton class representing a required parameter for an Optimizer."""
def __repr__(self):
return "<required parameter>"
required = _RequiredParameter()
[docs]class Optimizer(object):
r"""Base class for all optimizers.
.. warning::
Parameters need to be specified as collections that have a deterministic
ordering that is consistent between runs. Examples of objects that don't
satisfy those properties are sets and iterators over values of dictionaries.
Args:
params (iterable): an iterable of :class:`torch.Tensor` s or
:class:`dict` s. Specifies what Tensors should be optimized.
defaults: (dict): a dict containing default values of optimization
options (used when a parameter group doesn't specify them).
"""
def __init__(self, params, defaults):
torch._C._log_api_usage_once("python.optimizer")
self.defaults = defaults
self._hook_for_profile()
if isinstance(params, torch.Tensor):
raise TypeError("params argument given to the optimizer should be "
"an iterable of Tensors or dicts, but got " +
torch.typename(params))
self.state = defaultdict(dict)
self.param_groups = []
param_groups = list(params)
if len(param_groups) == 0:
raise ValueError("optimizer got an empty parameter list")
if not isinstance(param_groups[0], dict):
param_groups = [{'params': param_groups}]
for param_group in param_groups:
self.add_param_group(param_group)
def __getstate__(self):
return {
'defaults': self.defaults,
'state': self.state,
'param_groups': self.param_groups,
}
def __setstate__(self, state):
self.__dict__.update(state)
self._hook_for_profile() # To support multiprocessing pickle/unpickle.
def __repr__(self):
format_string = self.__class__.__name__ + ' ('
for i, group in enumerate(self.param_groups):
format_string += '\n'
format_string += 'Parameter Group {0}\n'.format(i)
for key in sorted(group.keys()):
if key != 'params':
format_string += ' {0}: {1}\n'.format(key, group[key])
format_string += ')'
return format_string
def _hook_for_profile(self):
self._zero_grad_profile_name = "Optimizer.zero_grad#{}.zero_grad".format(self.__class__.__name__)
def profile_hook_step(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
obj, *_ = args
profile_name = "Optimizer.step#{}.step".format(obj.__class__.__name__)
with torch.autograd.profiler.record_function(profile_name):
return func(*args, **kwargs)
return wrapper
hooked = getattr(self.__class__.step, "hooked", None)
if not hooked:
self.__class__.step = profile_hook_step(self.__class__.step)
self.__class__.step.hooked = True
[docs] def state_dict(self):
r"""Returns the state of the optimizer as a :class:`dict`.
It contains two entries:
* state - a dict holding current optimization state. Its content
differs between optimizer classes.
* param_groups - a dict containing all parameter groups
"""
# Save order indices instead of Tensors
param_mappings = {}
start_index = 0
def pack_group(group):
nonlocal start_index
packed = {k: v for k, v in group.items() if k != 'params'}
param_mappings.update({id(p): i for i, p in enumerate(group['params'], start_index)
if id(p) not in param_mappings})
packed['params'] = [param_mappings[id(p)] for p in group['params']]
start_index += len(packed['params'])
return packed
param_groups = [pack_group(g) for g in self.param_groups]
# Remap state to use order indices as keys
packed_state = {(param_mappings[id(k)] if isinstance(k, torch.Tensor) else k): v
for k, v in self.state.items()}
return {
'state': packed_state,
'param_groups': param_groups,
}
[docs] def load_state_dict(self, state_dict):
r"""Loads the optimizer state.
Args:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
if len(groups) != len(saved_groups):
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups)
saved_lens = (len(g['params']) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain.from_iterable((g['params'] for g in saved_groups)),
chain.from_iterable((g['params'] for g in groups)))}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
if param.is_floating_point():
value = value.to(param.dtype)
value = value.to(param.device)
return value
elif isinstance(value, dict):
return {k: cast(param, v) for k, v in value.items()}
elif isinstance(value, container_abcs.Iterable):
return type(value)(cast(param, v) for v in value)
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
else:
state[k] = v
# Update parameter groups, setting their 'params' value
def update_group(group, new_group):
new_group['params'] = group['params']
return new_group
param_groups = [
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({'state': state, 'param_groups': param_groups})
[docs] def zero_grad(self, set_to_none: bool = False):
r"""Sets the gradients of all optimized :class:`torch.Tensor` s to zero.
Args:
set_to_none (bool): instead of setting to zero, set the grads to None.
This will in general have lower memory footprint, and can modestly improve performance.
However, it changes certain behaviors. For example:
1. When the user tries to access a gradient and perform manual ops on it,
a None attribute or a Tensor full of 0s will behave differently.
2. If the user requests ``zero_grad(set_to_none=True)`` followed by a backward pass, ``.grad``\ s
are guaranteed to be None for params that did not receive a gradient.
3. ``torch.optim`` optimizers have a different behavior if the gradient is 0 or None
(in one case it does the step with a gradient of 0 and in the other it skips
the step altogether).
"""
if not hasattr(self, "_zero_grad_profile_name"):
self._hook_for_profile()
with torch.autograd.profiler.record_function(self._zero_grad_profile_name):
for group in self.param_groups:
for p in group['params']:
if p.grad is not None:
if set_to_none:
p.grad = None
else:
if p.grad.grad_fn is not None:
p.grad.detach_()
else:
p.grad.requires_grad_(False)
p.grad.zero_()
[docs] def step(self, closure):
r"""Performs a single optimization step (parameter update).
Args:
closure (callable): A closure that reevaluates the model and
returns the loss. Optional for most optimizers.
.. note::
Unless otherwise specified, this function should not modify the
``.grad`` field of the parameters.
"""
raise NotImplementedError
[docs] def add_param_group(self, param_group):
r"""Add a param group to the :class:`Optimizer` s `param_groups`.
This can be useful when fine tuning a pre-trained network as frozen layers can be made
trainable and added to the :class:`Optimizer` as training progresses.
Args:
param_group (dict): Specifies what Tensors should be optimized along with group
specific optimization options.
"""
assert isinstance(param_group, dict), "param group must be a dict"
params = param_group['params']
if isinstance(params, torch.Tensor):
param_group['params'] = [params]
elif isinstance(params, set):
raise TypeError('optimizer parameters need to be organized in ordered collections, but '
'the ordering of tensors in sets will change between runs. Please use a list instead.')
else:
param_group['params'] = list(params)
for param in param_group['params']:
if not isinstance(param, torch.Tensor):
raise TypeError("optimizer can only optimize Tensors, "
"but one of the params is " + torch.typename(param))
if not param.is_leaf:
raise ValueError("can't optimize a non-leaf Tensor")
for name, default in self.defaults.items():
if default is required and name not in param_group:
raise ValueError("parameter group didn't specify a value of required optimization parameter " +
name)
else:
param_group.setdefault(name, default)
params = param_group['params']
if len(params) != len(set(params)):
warnings.warn("optimizer contains a parameter group with duplicate parameters; "
"in future, this will cause an error; "
"see github.com/pytorch/pytorch/issues/40967 for more information", stacklevel=3)
param_set = set()
for group in self.param_groups:
param_set.update(set(group['params']))
if not param_set.isdisjoint(set(param_group['params'])):
raise ValueError("some parameters appear in more than one parameter group")
self.param_groups.append(param_group)