torch.std¶
-
torch.
std
(input, unbiased=True) → Tensor¶ Returns the standard-deviation of all elements in the
input
tensor.If
unbiased
isFalse
, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.- Parameters
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[-0.8166, -1.3802, -0.3560]]) >>> torch.std(a) tensor(0.5130)
-
torch.
std
(input, dim, unbiased=True, keepdim=False, *, out=None) → Tensor
Returns the standard-deviation of each row of the
input
tensor in the dimensiondim
. Ifdim
is a list of dimensions, reduce over all of them.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).If
unbiased
isFalse
, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 0.2035, 1.2959, 1.8101, -0.4644], [ 1.5027, -0.3270, 0.5905, 0.6538], [-1.5745, 1.3330, -0.5596, -0.6548], [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std(a, dim=1) tensor([ 1.0311, 0.7477, 1.2204, 0.9087])